

Otimização do planejamento da Cadeia de Suprimentos com Ciência de Dados e Inteligência Artificial: Um caso real

por Thiago Gatti 10 min leitura.

Motivação

Depois de anos de consultoria em Supply Chain e cargos de gestão em multinacionais no Brasil e na Alemanha, implementando softwares líderes de mercado e criando soluções em Excel para Finanças e S&OP, decidi integrar o meu conhecimento e experiência em um único aplicativo Python.

Planejamento Integrado de Negócios (IBP) é o foco do app, pois sincroniza algoritmos de Finanças e Supply Chain em um único conjunto de números. Dessa forma o planejamento fica mais rápido e fácil, que é o objetivo da Orkideon, ao invés de apenas construir um "software".

Com este business case, espero expor oportunidades em Supply Chain, Vendas e Finanças a partir de dados reais, com digitalização e estratégia.

Espero que você goste da leitura e considere a Orkideon para fazer um projeto na sua empresa.

Cenário do Business Case

A empresa em questão foi um grande player da indústria química no Brasil em 2011, com três fábricas, cerca de 200 funcionários, mais de 6.000 itens e cerca de 1.500 clientes de nicho B2B, que foram os considerados neste estudo.

O baixo nível de serviço foi o principal problema, com reclamações de clientes devido a itens não produzidos, seguido por movimentação lenta de estoque e altos custos de transferência. Basicamente, aquela equipe de planejamento estava tendo dificuldade em escolher o que produzir e quando.

Fui contratado como Gerente PJ para ajudar a resolver o problema. Minha abordagem foi usar decisões baseadas em dados para avaliar pragmaticamente os obstáculos. Juntos, projetamos e implementamos bancos de dados e APO's em Excel.

A utilização desses APO's pela equipe de Planejamento e Controle de Produção, sob minha responsabilidade, aumentou a previsão de demanda de 30% para cerca de 75%, melhorando a qualidade do Master-Schedule, o que melhorou o throughput, que é excelente.

As melhores práticas de Master Production Scheduling (MPS) e algoritmos de previsão de demanda foram implementadas e, combinadas, geraram um efeito multiplicador, que aumentou o nível de serviço em cerca de 50% e cessou as reclamações dos clientes.

Apesar do sucesso, uma questão permanece: o aprendizado de máquina poderia ter tido um desempenho melhor?

Objetivos do Business Case

- 1. Demonstrar a aplicação sendo desenvolvida em Python usando dados reais.
- 2. Demonstrar alguns dos APO's em Excel mencionados.
- 3. Demonstrar o uso de freeware de mineração de dados.

Esses sistemas são usados em conjunto para responder a questões comuns do Planejamento da Cadeia de Suprimentos, como:

- a. Qual design de banco de dados?
- b. Qual período de revisão do planejamento?
- c. Qual a precisão da previsão de demanda?
- d. Quantos dados são necessários?
- e. Quais recursos considerar?
- f. Qual plano mestre de produção?
- g. Qual redução de estoque / liberação de capital de giro?
- h. Qual a capacidade de armazém?
- i. Qual nível de serviço?
- j. Qual meta de inventário?
- k. Qual capacidade de produção?
- I. Qual ROI?
- m. Qual preço?

Machine Learning

Feature Engineering Forecast Scenario Simulation Autonomous Modeling

Data Model Feature Importances Learning Rate Pipeline Decomposition Autocorrelation Confusion Matrix Decision Tree Segmentation SHAP

Trained Data Model's Sample (100, 18) | Good Forecast: 0.95

	Mean_PV	Mean_PV Quantity_Sum COGS_Sum_PV Group	COGS_Sum_PV	Group	scGross Revenue_Sum_PV	scUn Price_W_Mean_PV	scCOGS_Sum_PV	scQuantity_Sum	scGross Revenue_Sum_PV scUn Price_W_Mean_PV scCOGS_Sum_PV scQuantity_Sum Forecasted_scQuantity_Sum +1-MAPE	↓1-MAP
9	4.8905	440	494.2036	BU 2 Item 2 PR (12.785, 20.11]	0.4654	0.8691	0.4014	0.3203	0.3203	1
59	3.2086	099	494.2346	BU 2 Item 2 PR (12.785, 20.11]	0.4644	0.7147	0.4014	0.3432	0.3432	1
54	0.2577	1,100	142.4376	BU 3 Item 1 RS (0.735, 8.41]	0.2997	0.0887	0.3127	0.3992	0.3992	1
35	4.5656	099	1,488.4295	BU 2 Item 1 RS (5.445, 12.785]	0.5101	0.8431	0.5169	0.3432	0.3432	1
9	7.7215	10,890	26,711.6932	BU 2 Item 2 SC (12.785, 20.11]	0.9595	0.9529	0.9335	0.8146	0.8241	0.9885
45	3.1968	3,080	5,265.4589	BU 2 Item 1 PR (5.445, 12.785]	0.6892	0.713	0.72	0.5894	0.5817	0.9869
28	2.7951	3,960	5,675.162	BU 2 Item 1 PR (5.445, 12.785]	0.7303	0.5914	0.7336	0.6226	0.6312	0.9864
11	2.0719	8,586	8,849.8686	BU 2 Item 1 PR (5.445, 12.785]	0.812	0.4771	0.8072	0.7681	0.7814	0.983
										3
				Figura 1: Python com Streamlit: o módulo de aprendizado de máquina.	Streamlit: o módulo	o de aprendizado o	de máquina.			U

Figura 1: Python com Streamlit: o módulo de aprendizado de máquina.

Qual design de banco de dados?

Figura 2: Visão geral simplificada da estrutura interna do aplicativo.

Os dados originais são transformados até estarem prontos para a Machine Learning. Os KPI's estão presentes em todas as etapas. Quanto mais avançado o estágio, mais revelador é o KPI. Como será observado nas páginas seguintes, os KPI's disponíveis abrangem todas as camadas do Analytics, descritas pela Gartner como: Descritivo, Diagnóstico, Preditivo e Prescritivo.

Original Features	Augmented Features	Relevant Features
Year	Period	scCOGS_Sum_PV
Month	Group	scUn Price_W_Mean_PV
Day	year	scGross Revenue_Sum_PV
Region	month	
Quantity	day	
Gross Revenue	BU	
Net Revenue	Item	Final (arguably) Data Model
COGS	Region	Occurences
Gross Profit	Un Price_Cut	Item
Reference Cost	Occurences	Salesman_Count
Replacement Cost	Gross Revenue_Sum	Un Price_W_Mean_PV_Arc_Elasticity_of_Quantity_Sum
BU	COGS_Sum	BU
Client	Quantity_Sum	Gross Revenue_Sum_PV
Item	Salesman_Count	day
Salesman	Un Price_W_Mean	month
Un Price	Interest_W_Mean	Region
	COGS_Sum_PV	Period
	Gross Revenue_Sum_PV	Un Price_W_Mean_PV
	Un Price_W_Mean_PV	Quantity_Sum
	Delta_Perc_Un Price_W_Mean_PV	COGS_Sum_PV
	Delta_Perc_Quantity_Sum	year
	Un Price_W_Mean_PV_Arc_Elasticity_of_Quantity_Sum	Group
	Un Price_W_Mean_PV_x_Quantity_Sum	
	Delta_Un Price_W_Mean_PV_x_Quantity_Sum	
	Delta_Quantity_Sum	
	Marginal_Un Price_W_Mean_PV_x_Quantity_Sum	

Figura 3: Dados em diferentes fases do processo de preparação.

O processo de transformação (também conhecido como: pré-processamento, wrangling, etc.) é dinâmico, incluindo e excluindo colunas (recursos), alterando valores e número de linhas.

Os dados utilizados no estudo são reais e foram totalmente anonimizados para este business case.

Qual período de revisão do planejamento?

Autocorrelation (ACF)

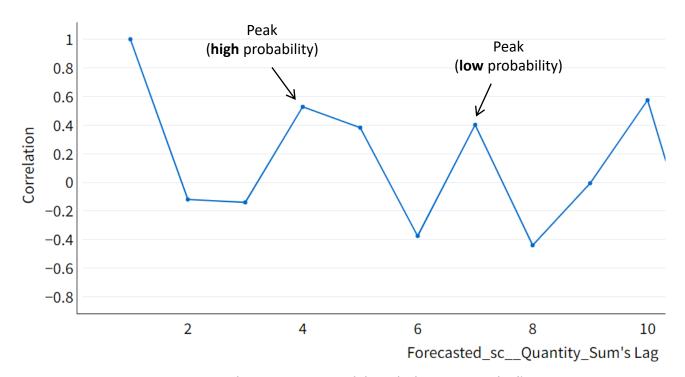


Figura 4: Python com Statsmodels e Plotly: Autocorrelação.

Os dados originais são consolidados por semana. A autocorrelação atinge seu pico em 4 e 10 semanas. Como 4 tem menos erros, o modelo de dados será reconsolidado mensalmente e o período de revisão do planejamento deverá seguir o mesmo princípio.

Qual a precisão da previsão de demanda?

95%

Quantos dados são necessários?

2 anos de movimento

Learning Rate (Estimator Accuracy)

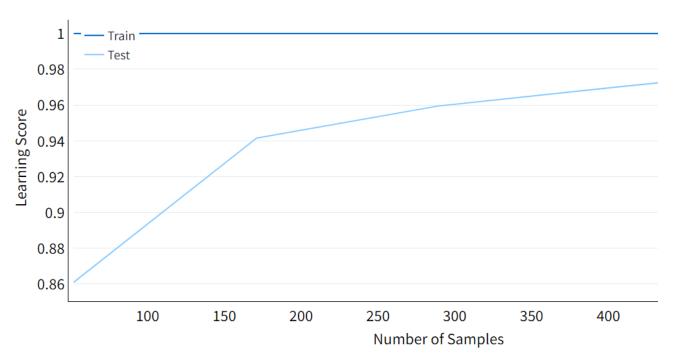


Figura 5: Python com Scikit-Learn e Plotly: Taxa de aprendizagem.

95% é a nova precisão da previsão de demanda global em comparação com os 75% anteriores. Isso representa uma melhora de quase 30%. A alta precisão é alcançada após cerca de 300 amostras ou o equivalente a 2 anos de dados.

A métrica utilizada neste caso foi 1 - WMAPE (1 - Weighted Mean Average Percentage Error).

O modelo vencedor é um Decision Tree Regressor com codificação One-Hot e transformação Quantile.

Os aplicativos Python e Excel foram medidos em relação aos dados de teste, que são um subconjunto do banco de dados original.

Quais recursos considerar?

COGS ou CPV

Feature Importances / Predictive Power

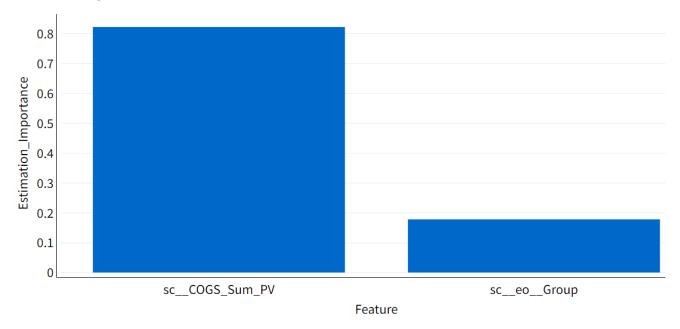


Figura 6: Python com Scikit-Learn e Plotly: Estimator Feature Importances.

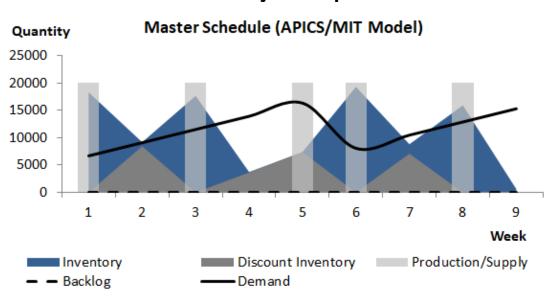
Quando a estimativa do CPV está presente, é possível obter maior precisão nas previsões.

A previsão de CPV é comumente exigida pelo departamento Financeiro e também pode contribuir para a qualidade das previsões da Cadeia de Abastecimento.

Oportunidade Futura

Prever o CPV antes de prever a demanda e/ou trabalhar com cenários econométricos.

Qual Plano Mestre de Produção? ... para o item 1



1 - Master Schedule (APICS/MIT Model)

	Inventory	Demand	Active	Production	Inventory	Backlog	Available	То
Week	Before	Forecast	Orders	/Supply	After		To Promise	Discount
1	5000	6700	0	20000	18300	0	18300	0
2	18300	9110	0	0	9190	0	9190	8475
3	9190	11525	0	20000	17665	0	17665	0
4	17665	13935	0	0	3730	0	3730	3655
5	3730	16345	0	20000	7385	0	7385	7385
6	7385	8075	0	20000	19310	0	19310	0
7	19310	10490	0	0	8820	0	8820	7100
8	8820	12900	0	20000	15920	0	15920	0
9	15920	15315	0	0	605	0		

2 - P&L [R\$]

2 10	ב [ולא]							
Week	Revenue	cogs	Backlog	Inventory	Warehousing	EBITDA	Service	ROI
1	13,552	7,088	0	19,361	5,121	1,343	100%	0.1
2	18,427	9,638	0	9,723	2,572	6,217	100%	0.6
3	23,312	12,193	0	18,689	4,943	6,176	100%	0.3
4	28,187	14,743	0	3,946	1,044	12,400	100%	3.1
5	33,062	17,293	0	7,813	2,067	13,702	100%	1.8
6	16,334	8,543	0	20,430	5,404	2,387	100%	0.1
7	21,219	11,098	0	9,331	2,468	7,652	100%	0.8
8	26,093	13,648	0	16,843	4,455	7,990	100%	0.5
9	30,978	16,203	0	640	169	14,606	100%	22.8
Sum:	211,164	110,448	0		28,242	72,474		
Average:				11,864			100%	
Std Dev:	27%							
							ROI:	0.7

Figura 7: Excel: Simulação do Master-Schedule no APO.

Qual redução de estoque? Qual liberação de capital de giro? ... para o item 1

50% Working Capital liberado

Foi adotado um modelo APICS/MIT Master-Schedule para receber a previsão do item 1 e calcular a necessidade. Em seguida, um P&L é calculado para cada linha e o ROI final é apresentado.

Parâmetros de Simulação

A capacidade do reator é de 20 toneladas, o item produzido é armazenado em tambores de 200 kg cada quando cheios, 4 tambores por pallet. O custo de armazenamento é de 25% do CPV. O custo do backlog é o dobro do CPV. Os dados sobre pedidos ativos não estão disponíveis, portanto, presume-se zero. O estoque inicial do item 1 é desconhecido, então são assumidos 5.000 kg.

A reconsolidação do modelo de dados para o período semanal aumenta a granularidade, que diminui a precisão. Porém, um modelo feito sob medida, específico para previsão semanal, conseguiu atingir 91% de precisão, quando uma estimativa de CPV está presente e 85% sem CPV. Alternativamente, a previsão mensal poderia ser dividida por 4,3 para uma aproximação da demanda semanal.

O estoque médio inicial de 11.864 kg foi para 6.211 kg (redução de quase 50%) adotando-se lotes de 12.000 kg.

Qual a capacidade do armazém? ... para o item 1 Bônus: Qual EOQ - Lote Econômico? ... para o item 1

O APO em Excel calcula algumas métricas comuns da cadeia de suprimentos, como EOQ e capacidade de armazém necessária, conforme segue.

Cost per Order/Setup [R\$] = 200.00 EOQ/EPQ [kg] = 12,565 Order Frequency [periods] = 1.08 Confidence Interval = 99% Statistical Safety Stock [kg] = 26,984 Expected Average Inventory [kg] = 27,950 Req. Warehouse Capacity [kg] = 37,618 Req. Warehouse Capacity [pallets] = 47 POQ [kg] = 9,668 47 pallets 12,000 kg

Figura 8: Excel: Métricas da Cadeia de Suprimentos no APO.

Qual nível de serviço? Qual meta de inventário? Qual capacidade? Qual ROI?

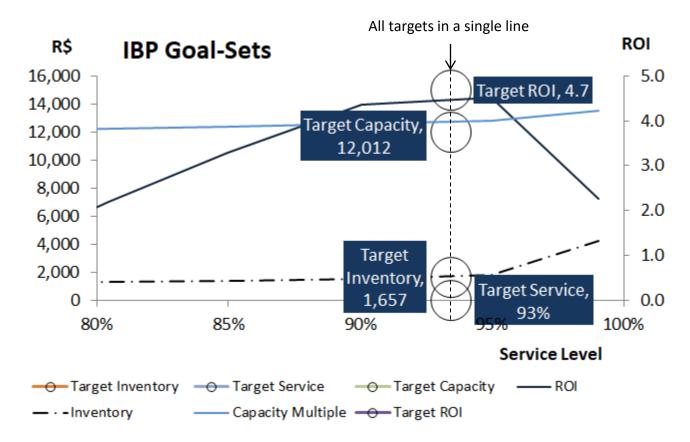


Figura 9: Excel: Módulo de Definição de Metas do APO.

Todas as metas do IBP de uma vez!

Continuando o exercício para o item 1, um reator com capacidade de 12 toneladas é capaz de fornecer 4,7 ROI em comparação com 0,7 ROI do atual reator de 20 toneladas. Isso acontece porque grandes lotes elevam o estoque.

O ótimo da simulação é melhor que o EOQ em termos de ROI porque leva em consideração as restrições "ocultas" daquela operação específica, que não estão incluídas no algoritmo do EOQ. Embora ambas as quantidades sejam próximas, o mesmo não acontece para o ROI, que é parcialmente explicado pelo fato do item 1 ser uma commodity.

A julgar apenas pelo item 1, a sugestão é substituir o reator atual por um menor.

Gestão de Metas Corporativas (OKR/MBO)

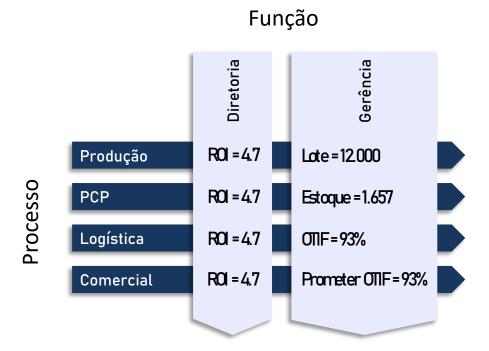


Fig. 10: Simplificação do Sistema de Metas Corporativas Matriciais correspondnte ao IBP.

O alinhamento de metas do IBP foi derivado em metas corporativas matriciais e distribuído respeitando a estrutura da empresa.

Qual preço?

Pricing Fine Tuning for Maximum Profit at Different What-If COGS Scenarios

year	month	Quantity	BU	Item	Elasticity	Commissions and Taxes	Un COGS	Interest	Profit Margin	Un Price
2012	1	189,507	BU 1	Item 1	1	0.33	3.00	0.50	0.30	3.48
2012	1	196,621	BU 1	Item 1	1	0.33	3.00	0.50	0.25	3.42
2012	1	190,912	BU 1	Item 1	1	0.33	3.00	0.50	0.20	3.41
2012	1	189,507	BU 1	Item 1	1	0.33	3.00	0.60	0.30	3.48
2012	1	196,621	BU 1	Item 1	1	0.33	3.00	0.60	0.25	3.42
2012	1	190,912	BU 1	Item 1	1	0.33	3.00	0.60	0.20	3.41
2012	1	189,507	BU 1	Item 1	1	0.33	3.30	0.50	0.30	3.48
2012	1	196,621	BU 1	Item 1	1	0.33	3.30	0.50	0.25	3.42
2012	1	190,912	BU 1	Item 1	1	0.33	3.30	0.50	0.20	3.41
2012	1	189,507	BU 1	Item 1	1	0.33	3.30	0.60	0.30	3.48
2012	1	196,621	BU 1	Item 1	1	0.33	3.30	0.60	0.25	3.42
2012	1	190,912	BU 1	Item 1	1	0.33	3.30	0.60	0.20	3.41

Fig 11: Orange: sugestões de preços.

Existe uma sugestão de preço de lucro máximo diferente para cada cenário. E pode ser ajustada em tempo real.

A variação de preço afeta a demanda, que afeta o plano mestre, que afeta o estoque, que afeta o ROI.

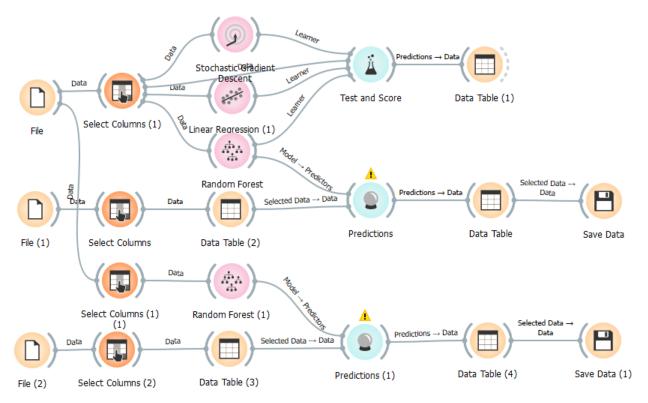


Fig 12: Orange data mining freeware canvas.

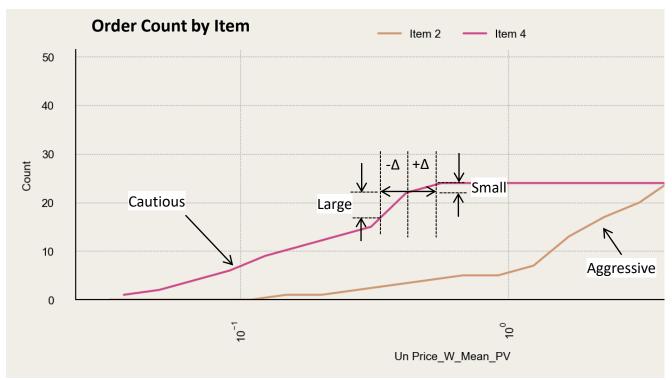


Figura 13: Python com Seaborn: histograma univariado.

Para o item 4, um aumento delta no preço representa um pequeno número de eventos de vendas, enquanto a mesma diminuição delta representa um grande número de eventos de vendas. Então, é preferível diminuir os preços para aumentar o número de eventos. Este é considerado um perfil cauteloso.

O perfil agressivo permite aumentar preços, indicando potencial de diferenciação ou espaço para designação de itens especiais.

Vendas

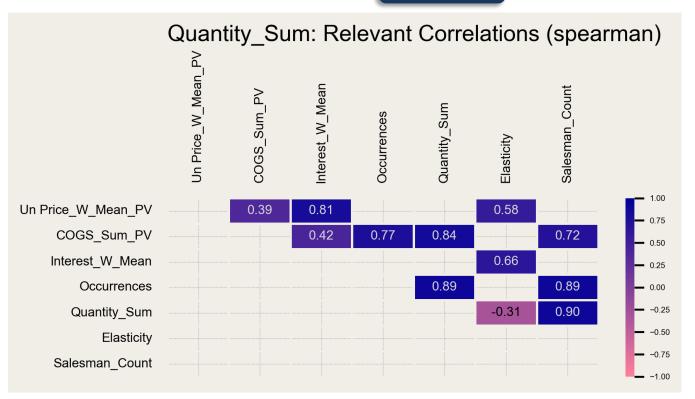


Figura 14: Python com Scipy: Correlações de Spearman.

Conditional Probabilities

		Salesma	n_Count	
Un Price_W_Mean_PV	Quantity_Sum	(1.0, 8.0]	(8.0, 15.0]	
{"left": 0.07, "right": 2.1}	{"left": -77.2, "right": 148830}	0.535	0.095	
{"left": 0.07, "right": 2.1}	{"left": 148830, "right": 297440}	0	0.477	←
{"left": 2.1, "right": 4}	{"left": -77.2, "right": 148830}	0.465	0.095	+43%
{"left": 2.1, "right": 4}	{"left": 148830, "right": 297440}	0	0.333	

FFigura 13: Python com Pandas: Probabilidades Condicionais.

O headcount de vendas associado ao volume pode indicar vendas concentradas em grandes clientes com altos volumes e/ou melhores comissões, visto que é mais fácil vender a preços mais baixos e é também mais conveniente fazê-lo em menos visitas.

No cenário de alta quantidade, há 43% mais representantes do que quando os preços são mais baixos.

Esta prática estaria minimizando a rentabilidade da empresa?

Comissões

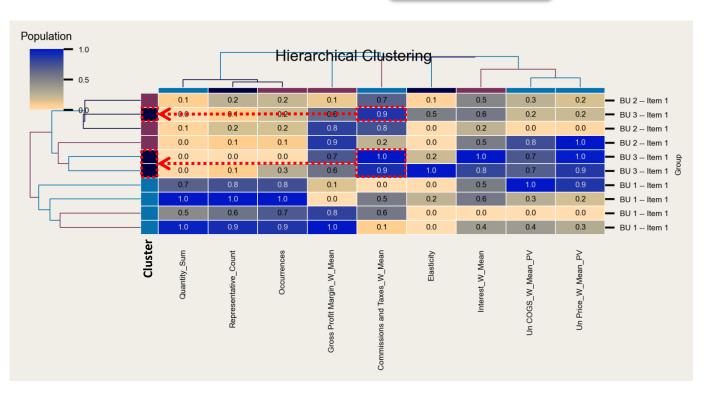


Figura 15: Python com Seaborn: Clustering Hierárquico.

Comissões e Impostos constituem um "padrão oculto", com cluster específico nas BU's 2 e 3.

Por outro lado, na BU 1, a contagem de representantes e o volume total desempenham um papel mais significativo.

Canibalização, ou não, de itens

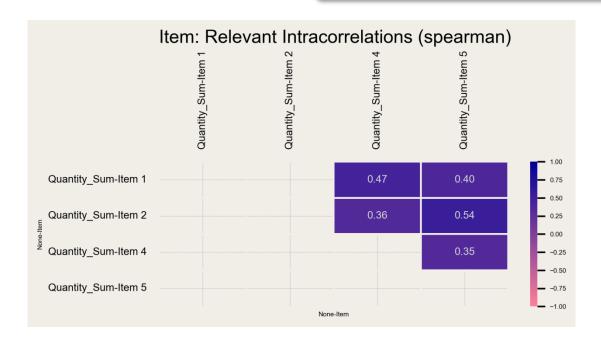


Figura 16: Python com Seaborn: Canibalização versus itens complementares.

Os itens 2 e 5 são complementares. As vendas de um ajudam a vender o outro. Caso esta relação fosse negativa um estaria canibalizando o outro.

Considerações Finais

Conforme mencionado anteriormente, o objetivo deste business case foi demonstrar a capacidade da Orkideon de responder a questões comuns de Supply Chain e de estabelecer metas gerenciais. Todas as questões propostas foram respondidas e, ao longo do caminho, insights surpreendentes apareceram. Finalmente, novas portas se abriram para a exploração de possibilidades futuras.

O aprendizado de máquina aplicado ao planejamento da cadeia de suprimentos é um campo verde porque o conhecimento ainda é pego emprestado de outras áreas.

Com experiência, conhecimento, metodologia e as ferramentas certas, a tomada de decisão é rápida e fácil. As empresas podem se tornar mais responsivas e é possível alternar entre operações e estratégia como nunca antes.

Este estudo levou apenas alguns minutos, mas o projeto que o alavancou já tem 2 anos. Sabe-se que a maioria dos executivos não têm predisposição para investir em projetos internos de longo prazo como esse mas, o resultado é evidente. A boa notícia é que agora as empresas podem atingir resultados similares através da Orkideon.

Espero que você tenha gostado da leitura tanto quanto gostei de prepará-la.

Entre em contato e saiba mais.

Cordialmente,

Thiago

Python app https://www.orkideon.com/app-1